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The variation of R,,, with Jis shown in Fig. 6 with A = 0.01 
and n as a parameter. For a particular value of .7 (i.e. heat 
load), there is an optimum value of R which should be used. 
In other words, using 

in equation (15) 
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Thus there is an optimum fluid velocity which corresponds 
to the minimum loss of available power and should be re- 
commended in the design of the heat exchanger. 

4. CONCLUSIONS 

This analysis shows that in any heat transfer application 
with the constant wall temperature boundary condition, the 
initial temperature difference between the fluid and the wall 
is an important design criterion and should be set at the 
optimum value. There is an optimum ratio of the heat trans- 
fer to pumping power which should be used. Simply max- 
imizing this ratio is not often a good solution, since in that 
case the entropy generated may be far from the minimum 
possible and a large amount of the available energy may thus 
be irretrievably lost. An optimum fluid velocity cor- 
responding to the minimum irreversibility is recommended 
for the design of such a heat exchanger. 
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INTRODUCTION 

MIXED convection accounts for the buoyancy effects on 
forced flows or the forced flow effects on buoyant flows. 
Published results on mixed convection flows do not cover the 
entire mixed convection regime and, in addition, the uniform 
wall temperature case (UWT) has received significantly more 
attention than the uniform wall heat flux case (UHF). A 
relatively comprehensive summary on mixed convection in 
external flows has been given recently by Chen et al. [I]. 

To summarize the analytical studies for mixed convection 
adjacent to flat plates under the UHF heating condition, it 
is noted that the local Nusselt number results have been 
presented for vertical plates covering 0 < Gr,*/Re:” Q 2.8 
for 0.1 < Pr < 100 [2], inclined plates covering 
-0.25 < Gr!cosv/Re?’ s 5 for Pr = 0.7 and 7 131 and 
- 1 < Gr.F/ke:‘* < 2 for Pr = 0.7 and 7 [4], and horiiontal 
plates covering 0 < Gr,*/Re.z < 1 for Pr = 0.7 [5]. Thus, it is 
clear that the heat transfer results that have been presented 
for the UHF case are rather limited in scope with regard to 
the ranges of buoyancy parameter Gr:/Rc and Prandtl 
numbers. 

In the present paper, comprehensive results for the local 
and average Nusselt numbers are presented for the entire 
mixed convection regime, ranging from pure forced con- 
vection to pure free convection (i.e. for 0 < Gr:/Re$’ < CO), 

for a wide range of Prandtl numbers, 0.1 < Pr < 100. The 
flow configurations covered include vertical, inclined and 
horizontal flat plates with uniform surface heat flux. Both 
buoyancy assisting and opposing flows are treated. The 
upper and lower bounds (a, 6) of the significant mixed con- 
vection regime, a Q Gr,/Re,” < b, are established. In 
addition, simple correlation equations for the local and 
average Nusselt numbers are formulated for all the flow 
configurations. Such a comprehensive treatment of mixed 
convection flows on flat plates has not been carried out for 
the UHF case. 

CORRELATIONS 

The formulation and the treatment of laminar mixed con- 
vection flow adjacent to a semi-infinite flat plate with uniform 
heat flux, q,,,, imposed on its surface have been presented 
for vertical, inclined and horizontal geometries [l]. That 
formulation was used to generate new numerical results for 
these flow configurations which cover the entire mixed con- 
vection regime for the buoyancy assisting and the buoyancy 
opposing flow conditions as shown in Figs. 1 and 2. These 
results were used to validate the accuracy of proposed simple 
correlations for the local and average mixed convection Nus- 
selt numbers. 
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NOMENCLATURE 

9 gravitational acceleration Re, local Reynolds number, u,x/v 
Gr: modified local Grashof number, gpq,+_x4/kv2 ReL Reynolds number based on L, u,Liv 
Gr,* modified Grashof number based on L, T fluid temperature 

&JW u, a streamwise and normal velocity 
h local heat transfer coefficient, q,J( T, - T,) components 

K 
1 = 

average heat transfer coefficient, - 
s 

hdx 
x, Y streamwise and normal coordinates. 

Lo 
k thermal conductivity Greek symbols 

L length of plate thermal diffusivity 

n constant exponent ; volumetric coefficient of thermal expansion 

Na,, NUN, Na, local Nusselt numbers for pure )? angle of inclination from the vertical 

force&pure free, and mixed convection, hx/k V kinematic viscosity. 

Nu,, Nuu, Nu average Nusselt numbers for pure 
forced, pure free, and mixed convection, kL/k Subscripts 

Pr Prandtl number W condition at wall 

4 local surface heat flux co condition at free stream. 

Similar to the previous treatment of the uniform wall Verticalflat plates 
temperature case [6] for this geometry, a correlation for 
the local mixed convection Nusselt number for the UHF, 
boundary condition, Nu,, is proposed in terms of the local 
Nusselt number of the pure forced convection, Nur, and the 
local Nusselt number of the pure free convection, Nr+,, for 
the same geometry and boundary condition as [7] 

Nu: = NM; + N& (1) 
In the above equation, n is a constant exponent and the plus 
and minus signs pertain respectively to buoyancy assisting 
and buoyancy opposing flows. Equation (1) can be expressed 
as 

where 

y”=I&x” (2) 

Y = NuJNu, , X = Nu,/Nu,. (3) 

Equations (2) and (3) can also be applied to the average 
Nusselt number correlation if the Nu,, Nur and NuN 
expressions in the equations are replaced with the cor- -- 
qonding average Nusselt number expressions Nu, Nur and 
Nu,, respectively. Correlations equivalent to equation (2) for 
vertical, horizontal and inclined plates are presented below. 

The local Nusselt number expression for the pure forced 
convection in laminar boundary-layer flow along a vertical 
flat plate under the UHF boundary condition is given by [S] 

Nu, = G, (Pr)Rel/2, 

G,(Pr) = 0.464Pr’13[l +(0.0207/Pr)z’3]m ‘I“. (4) 

The corresponding expression for the pure free convection 
is given by [9] 

NuN = G2(Pr)Gr:]“, 

G,(Pr) = Pr2’5(4+9Pr”‘+10Pr)-“i. 
(5) 

The local Nusselt number for mixed convection flow can 
then be expressed according to equation (2) as 

Nu,Re; ‘j2/G1 (Pr) = { I+ [G,(Pr) 

x (Gr~/Re~‘Z)“‘/G,(Pr)l”)““. (6) 

Similarly, the mixed convection average Nusselt numbers 
can be correlated as 

NuRe; “‘/2G I (Pr) = { 1 & [SG,(Pr) 

x (GrZ/Re~‘)‘;‘/8G, (Pr)r} I”‘. (7) 

--- Pure forced convection 
--- Pure free convection 

---- Pura forced convectIon 

--- P”re f?aP co”“Pction 

- Assreting flow 
---- Opposing flow 

FIG. 1. Local Nusselt number results for flow along a vertical FIG. 2. Local Nusselt number results for flow over a hori- 
flat plate with uniform surface heat flux. zontal flat plate with uniform surface heat flux. 
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It is seen that equations (6) and (7) have the form 
Y = (1 &xn)““. 

Horizontal flat plates 
The correlation equation for the local Nusselt number for 

the pure forced convection limit, Nz+, for this flow con- 
figuration is given by equation (4). The expression for the 
pure natural convection limit, NUT, for an upward facing, 
UHF-heated flat plate was developed from the present cal- 
culations and has the following form 

NUT = G,(Pr)Gr,*“6, 

G,(Pr) = (Pr/6)‘/6Pr’12(0.12+l.2Pr”2)-‘. (8) 

The local Nusselt number in mixed convection flow for this 
geometry according to equation (2) then has the expression 

Nu,Re; “‘/G, (Pr) = { 1 + [G,(Pr) 

x (Gr:/Re~)“6/G,(Pr)l”}‘“. (9) 

The corresponding expression for the average Nusselt num- 
ber assumes the form 

%Re; “‘/2G,(Pr) = { 1 f [3G,(Pr) 

x (Gr~/Re~)1’6/4G,(Pr)j”}““. (10) 

InclinedJlat plates 
As was discussed in refs. 13, 61, equations (6) and (7) for 

fhe vertical plates can be used with good accuracy for the 
inclined plates in the angle range of 0” Q y < 75” by simply 
replacing Gr: and GrZ in these equations with Gr: cos y and 
Grtcos y, respectively, when the Reynolds numbers are larger 
than 10’. 

For larger inclination angles 75” < y < 90” different cor- 
relations are recommended for the mixed convection Nusselt 
numbers. The local Nusselt number for pure free convection 
along a UHF plate in the inclination angle range of 
75” Q y < 90” has been correlated by Chen ef al. [lo] as 

NuN = G,(Pr)Gr: ‘ia+D(y), lo4 $ Gr,‘Pr C IO“’ (11) 

where 

G,(Pr) = Pr”*(O.12+ l.2Pr’i2)-‘(Pr/6)‘i6+D(y’ (12) 

and 

D(y) = O.O38(cos y)“*. (13) 

The correlation for the local mixed convection Nusselt num- 
ber in the inclination angle range of 75” < y < 90” is then 
given by 

Nu,Re; “‘/G ,(Pr) = { 1 + [G,(Pr) 

x (Gr:/ Re.:)“6Gr,*qy’/G ,(Pr)J”} I’“. (14) 

Similarly, the average mixed convection Nusselt number for 
75” < y < 90” can be correlated as 

%Re; “‘/2G ,(Pr) 

G4(Pr)(Gr~/Re~)““Gr~“@’ lin 

W/6+D(~llGdPr) 
(15) 

RESULTS AND DISCUSSION 

The predicted local mixed convection Nusselt numbers, 
Nu,Re; I”, are presented in Fig. 1 as a function of the buoy- 
ancy parameter, Gr_z/Re, , ‘I2 for the vertical plate geometry. 
Similar results are presented in Fig. 2 for the horizontal plate 
geometry in terms of the corresponding buoyancy parameter, 
Gr,*/Rei. It has been verified from calculations for the 
inclined plate that Fig. 1 can also be used with good accuracy 
for inclined plates in the angle range of 0” < y 6 75” if the 
abscissa in that figure is replaced by Gr,* cos y/Re.z”. It is 
clear from these two figures that mixed convection Nusselt 
numbers are larger than either the pure forced or pure free 
convection values for buoyancy assisting flows and that they 
are smaller for buoyancy opposing flows. In the latter case, 
buoyancy forces cause a breakdown in the boundary-layer 
flow due to flow separation at small values of the buoyancy 
parameter. In addition, fluids with lower Prandtl numbers 
are seen to exhibit a higher sensitivity to increasing buoyancy 
forces in comparison to fluids with higher Prandtl numbers. 
Thus, the mixed convection regime changes as the Prandtl 
number changes. This mixed convection regime can be 
quantified by specifying the upper and lower bounds (a and 
b), a < Gr,*/Re; < b, based on a 5% departure in the local 
Nusselt number from the pure forced and the pure free 
convection asymptotes. The upper and lower bounds, a and 
b, are listed in Table 1 along with the maximum deviation 
from the pure convection asymptotes. 

The validity of the proposed simple correlations, equation 
(6) for vertical plates and equation (9) for horizontal plates, 
with an exponent of n = 3 was tested by comparing the local 
Nusselt numbers resulting from these correlations with the 
numerically predicted values that are shown in Figs. 1 and 
2. The maximum deviation between the correlated and the 
predicted values for both flow configurations is less than 5% 
for assisting flow and about 10% for opposing flow for the 
range of Prandtl numbers 0.1 $ Pr < 100. The correlations 
for the vertical plates, equations (6) and (7), can be used 
with good accuracy to calculate the Nusselt numbers for an 
inclined plate with 0” < y < 90” by replacing the Grashof 
numbers, Gr: and Gr: in these correlations with effective 
Grashof numbers Cr.: cos y and Grt cos y, respectively. 

The results for all flow configurations can be presented in 
one figure if the coordinates Y and X can be selected for the 
appropriate geometry as demonstrated in Fig. 3 for the case 
of Pr = 0.7 for all angles of inclination 0” Q y < 90”. It is 
clear from this figure that the proposed simple correlations 
for the mixed convection regime compare very well with the 
numerically predicted results. It should be noted that in Fig. 
3 the variables A(Pr), B(Pr) and r”’ stand for G,(Pr). G,(Pr) 
and (Gr.~/Re~“)“’ for a vertical plate, for G,(Pr). G,(Pr) and 
(Gr: cos y/ReJ’2) Iis or G,(Pr), G,(Pr) and (Gr:/Rei)“6Gr:“‘Y’ 
for an inclined plate. and for G,(Pr), G,(Pr) and (Gr,*/Rei)“6 
for a horizontal plate. 

Simple correlations for the average mixed convection Nus- 
selt numbers for the vertical, inclined and horizontal plate 
geometries are given in equations (7), (10) and (15). A good 
agreement between the predicted values and the correlated 

Table 1. Lower/upper bounds of significant buoyancy/forced-flow effects and maximum percentage increase in the 
local Nusselt number 

Vertical/inclined plates Horizontal plates 
a d Gr,* cos y/Rez” d b a C Gr$lRe: d b 

Prandtl 
number, Pr 

0.1 
0.7 
7 

100 

a b 

0.02 15 
0.04 20 
0.15 22 
0.70 70 

Max. increase 
in Nu, (%) 

33 
27 
24 
24 

a b 

0.005 18 
0.025 20 
0.15 40 
2.5 400 

Max. increase 
in Nu, (%) 

29 
22 
22 
22 
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FIG. 3. A comparison between predicted and correlated local 
Nusselt numbers for vertical, inclined and horizontal plates. 

results was also found to exist for the average Nusselt number 
with an exponent value of n = 3, as in the local Nusselt 
number. 

CONCLUSION 

The local and average Nusselt numbers for laminar mixed 
convection flow adjacent to vertical, inclined and horizontal 
flat plates with uniform surface heat flux are presented for 
the entire mixed convection regime and for a wide range of 
Prandtl numbers. Simple correlation equations for Nusselt 
numbers are presented, which show an excellent agreement 
with the numerically predicted mixed convection values for 
both buoyancy assisting and opposing flows. 
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1. INTRODUCTION 

THE UNSTEADY heat transfer from a heated wire is encount- 
ered in various applications including hot-wire or film 
anemometry and electronic cooling. The time lag between 
the heat transfer and the relative velocity of the fluid to the 
wire is now well recognized. Using the Oseen approximation, 
Davies [l] analyzed the heat transfer from a constant-tem- 
perature circular cylinder in a cross-flow which has a small, 
sinusoidally fluctuating velocity superimposed on the mean 
velocity. The Reynolds number corresponding to the mean 
flow considered by him was smaller than one. Davies found 
that there is always a phase lag between the fluctuating 
velocity and the fluctuating heat transfer unless when the 

Reynolds number approaches zero. Apelt and Ledwich [2] 
studied the same problem for flows of Reynolds numbers in 
the range l-40. They found numerically that the phase lag 
becomes more pronounced as the frequency of cylinder oscil- 
lation increases. Tseng and Lin [3] showed, by use of an 
asymptotic solution, that the phase lag persists in flows of 
Reynolds number of a few hundred. They also found the 
existence of an optimal frequency for the maximum heat 
transfer enhancement in a cross-flow of a given mean flow 
Reynolds number and a given small amplitude of cylinder 
fluctuation. Their asymptotic solution was later applied to 
construct the theory of a heat sensing velocimeter [4]. In the 
present investigation, we are concerned with the unsteady 
heat transfer from a heated cylinder oscillating with a large 


